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Fluctuations and Phase Transition Dynamics
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Kibble and Zurek have provided a unifying causal picture for the appearance of
classical defects like cosmic strings or vortices at the onset of phase transitions
in relativistic QFT and condensed matter systems, respectively. In condensed
matter the predictions are partially supported by agreement with experiments in
superfluid helium. We provide an alternative picture for the initial appearance
of defects that supports the experimental evidence. When the original predictions
fail, this is understood, in part, as a consequence of thermal fluctuations (noise),
which play a comparable role in both condensed matter and QFT.

1. OVERVIEW

In this paper I consider the emergence of “classical” field configura-
tions—topological defects—after a phase transition, and the extent to which
thermal fluctuations can inhibit this process. This is of particular interest in
the early universe, for which we expect a sequence of transitions from a very
symmetric initial state, and in which the presence of classical defects can
have important astrophysical consequences.

The relevance of topological defects is that when symmetry breaks, it
does not do so uniformly. At the very least, the field is uncorrelated on the scale
of the causal horizon at any time. Since a broken symmetry is, necessarily,
characterized by degenerate vacua, the choice of different vacua in domains
in which the fields are uncorrelated will lead naturally to topological defects
between them as the field does its best to order on large scales. The nature
of the defects depends on the relevant homotopy group of the ground-state
manifold. The most acceptable defect on cosmological grounds is the “cosmic
string”—a generalized field vortex—which may have played in role in struc-
ture formation.
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The details do not concern us here. What interests us is how this collec-
tion of essentially classical objects, which can be observed directly in princi-
ple, came into existence. The simplest question, which we shall address here,
is what is the density of cosmic strings (or other defects) at the time of
their appearance?

The early universe is very hot, but such a problem requires us to go
beyond equilibrium thermal field theory. In practice, we often know remark-
ably little about the dynamics of thermal systems. For simplicity, I shall
assume scalar field order parameters, with continuous transitions. In principle,
the field correlation length diverges at a continuous transition. In practice, it
does not since there is not enough time. One possibility is that the separation
of “defects” is characterized by the correlation length when it checks its
growth. If this were simply so, a measurement of defect densities would be
a measurement of correlation lengths. Estimates of this early field ordering
and its contingent defects in the early universe have been made by Kibble
[1, 2], using simple thermal [1] arguments or causal arguments [2] different
from the one above (although that is also due to Kibble [3]).

There are great difficulties in converting such predictions for the early
universe into experimental observations since, but for a possible stray mono-
pole, we have no direct evidence for them having existed.2 Further, if vortices
evolve into networks that show scaling, then length distributions are of greater
importance than density. However, Zurek suggested [4] that similar arguments
to those in ref. 2 were applicable to condensed matter systems for which
direct experiments on defect densities could be performed. This has led to
considerable activity from theorists working on the boundary between QFT
and condensed matter theory and from condensed matter experimentalists.
To date almost all experiments have involved superfluids, for which vortices
can be produced readily. All but one experiment is in agreement with these
simple causal predictions and we shall pay particular attention to this one
failure of prediction. In this paper I do the following:

• Review the Kibble/Zurek causality predictions for initial correlation
lengths and defect densities.

• summarize the results of the condensed matter experiments and pres-
ent an alternative picture in which thermal noise is explicit. I shall
then show how this alternative picture gives essentially the same
results as the Zurek picture for those condensed matter systems for
which there is experimental agreement.

• Use these ideas to address the more complicated problem of the

2 Although this does not impede our ability to make predictions for defect-driven fluctuations
in the CMB, for example.
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appearance of “classical” defect configurations in QFT in the light
of Kibble’s predictions, and the role of thermal noise in them.

A more detailed discussion of these and other issues is given elswhere [5].

2. WHEN SYMMETRY BREAKS, HOW BIG ARE THE
SMALLEST IDENTIFIABLE PIECES?

Defects in the large-scale ordering of the field can only appear once the
transition has taken place. If it is the case that defect density can be identified
simply from the field correlation length, the maximum density (an experimen-
tal observable in condensed matter systems, although not for the early uni-
verse) will be associated with the smallest identifiable correlation length in
the broken phase once the transition has been effected.

In order to see how to identify these “smallest pieces”3 it is sufficient
to consider the simplest theory with vortices, that of a single relativistic
complex scalar field in three spatial dimensions, undergoing a temperature
quench. In the first instance we assume that the qualitative dynamics of the
transition are conditioned by the field’s equilibrium free energy of the form

F(T ) 5 # d 3x (.¹f.2 1 m2(T ).f.2 1 l.f.4) (1)

Prior to the transition, at temperature T . Tc , the critical temperature, m(T ) .
0 plays the role of an effective “plasma” mass due to the interactions of f
with the heat bath, which includes its own particles. After the transition,
when T is effectively zero, m2(0) 5 2M 2 , 0 enforces the U(1) symmetry
breaking, with field expectation values ^.f.& 5 h, h2 5 M 2/l. The change
in temperature that leads to the change in the sign of m2 is most simply
understood as a consequence of the universe expanding. Models that attempt
to take inflation into account, however, lead to “preheating” that is not
Boltzmannian [7]. Nonetheless, even in such cases it is possible to isolate
an effective temperature for long-wavelength modes. This is all that is neces-
sary, but is too sophisticated for the simple scenarios that we shall present
here. We shall not even include a metric in Eq. (1).

The minima of the final potential of Eq. (1) now constitute the circle
f 5 heia. When the transition starts, f begins to fall into the valley of the
potential, choosing a random phase subject to continuity. At late times the
failure of the field to be uniform in phase on large scales will lead to it
twisting around classical “defects”—solutions to dF/df 5 0 that locally
minimize the energy stored in field gradients and potentials. Those of interest

3 The title of this section is essentially that posed in recent papers by Zurek [6].
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to us are vortices, tubes of “false” vacuum f ' 0, around which the field
phase changes by 62p. In an early universe context these are the simplest
possible “cosmic strings.”

How this collapse takes place determines the size of the first identifiable
domains. It was suggested by Kibble and Zurek that this size is essentially
the equilibrium field correlation length jeq at some appropriate temperature
close to the transition. I shall argue later that this is too simple, but it is a
plausible starting point. Two very different mechanisms have been proposed
for estimating this size.

2.1. Thermal Activation

In the early work on the cosmic string scenario an alternative possibility
to simple causality was to assume [1] that initial domain size was fixed in
the Ginzburg regime by the correlation length at that time, rather than the
causal radius. By this we mean the following. Once we are below Tc and the
central hump in V(f) 5 m2(T ).f.2 1 l.f.4 is forming, TG signals the tempera-
ture above which there is a significant probability for thermal fluctuations
over the central hump on the scale of the correlation length. Most simply, it
is determined by the condition

DV(TG)j3
eq(TG) ' TG (2)

where DV(T ) is the difference between the central maximum and the minima
of V(f, T ). We find .1 2 TG /Tc. 5 O(l).

Below TG fluctuations from one minimum to the other become increas-
ingly unlikely. When this happens the correlation length is

jeq(TG) 5 O 1 j0

!1 2 TG /Tc
2 (3)

where j0 5 M21 is the natural unit of length, the Compton wavelength of
the f particles.

It is tempting [1, 8] to identify jeq(TG) with the scale at which stable
domains begin to form. We shall see later that this is incorrect for quenches
that are not too slow. However, some care is needed if (as can happen in
condensed matter physics) we never leave the Ginzburg regime.

The formation of large domains is an issue that requires more than
equilibrium physics. The simplest dynamical arguments can be understood
in terms of causality.

2.2. Causality

We have already mentioned that causality puts an upper bound on domain
size. Specifically, if G(r, t) is the two-field correlation function at time t for
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separation r, then G vanishes for r $ 2t approximately. This was used by
Kibble [3] to put an upper bound on monopole density in the early universe.
If this causal bound and the Ginzburg criteria attempt to set scales once the
critical temperature has been passed, the causal arguments considered now
attempt to set scales before it is reached.

Here we attempt a lower bound on domain size, an upper bound on
defect density. Suppose the temperature T(t) varies sufficiently slowly with
time t that it makes sense to replace V(f, T ) by V(f, T(t)). With m2(T(t))
vanishing at T 5 Tc , which we suppose happens at t 5 0, the equilibrium
correlation length of the field fluctuations jeq(T(t)) 5 .m21(T(t)). diverges at
T(t) 5 Tc. It is sufficient to adopt a mean-field approximation in which
m2(T ) } (T 2 Tc). The true correlation length j(t) cannot diverge like jeq(T(t)),
since it can only grow so far in a finite time.

Initially, for t , 0, when we are far from the transition, we again assume
effective equilibrium, and the field correlation length j(t) tracks jeq(T(t))
approximately. However, as we get closer to the transition, jeq(T(t)) begins
to increase arbitrarily fast. As a crude upper bound, the true correlation length
fails to keep up with jeq(T(t)) by the time 2t at which jeq is growing at the
speed of light, djeq(T(2t))/dt 5 1. It was suggested by Kibble [2] that, once
we have reached this time, j(t) freezes in, remaining approximately constant
until the time t ' 1t after the transition, when it once again becomes
comparable to the now decreasing value of jeq. The correlation length jeq(t)
5 jeq(2t) is argued to provide the scale for the minimum domain size after
the transition.

Specifically, if we assume a time dependence m2(t) 5 2M 2t/tQ in the
vicinity of t 5 0, when the transition begins to be effected, then the causality
condition gives tC 5 t1/3

Q (2M )22/3. As a result, Mjeq(t) 5 (Mt0)1/3, which, with
condensed matter in mind, we write as

j 5 jeq(t) 5 j01tQ

t0
2

1/3

(4)

where t0 5 j0 5 M21 are the natural time and distance scales. In contrast
to Eq. (3), Eq. (4) depends explicitly on the quench rate, as we would expect.

2.3. QFT or Condensed Matter

This approach of Kibble was one of the motivations for a similar analysis
by Zurek [4] of transitions in condensed matter. After rescaling, F could
equally well be the Ginzburg–Landau free energy for the complex order-
parameter field whose magnitude determines the superfluid density. That is,
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F(T ) 5 # d 3x 1"2

2m
.¹f.2 1 a(T ).f.2 1

1
4

b.f.42 (5)

in which a(T ) } m2(T ) vanishes at the critical temperature Tc. The only
difference is that, in the causal argument, the speed of light should be replaced
by the speed of (second) sound, with different critical index.

Explicitly, let us assume the mean-field result a(T ) 5 a0e(T ), where
e 5 (T/Tc 2 1), remains valid as T/Tc varies with time t. In particular, we
first take a(t) 5 a(T(t)) 5 2a0t/tQ in the vicinity of Tc. The fundamental
length scale j0 is given from Eq. (5) as j2

0 5 "2/2ma0. The Gross–Pitaevski
theory suggests a natural time scale t0 5 "/a0. When we later adopt the
time-dependent Landau–Ginzburg (TDLG) theory we find this still to be
true, empirically, at order-of-magnitude level, and we keep it.

It follows that the equilibrium correlation length jeq(t) and the relaxation
time t(t) diverge when t vanishes as

jeq(t) 5 j0Z t
tQ

Z21/2

, t(t) 5 t0Z t
tQ

Z21

(6)

The speed of sound is c(t) 5 jeq(t)/t(t), slowing down as we approach the
transition as .t.1/2. The causal counterpart to djeq(t)/dt 5 1 for the relativistic
field is djeq(t)/dt 5 c(t). This is satisfied at t 5 2t, where t 5 !tQt0, with
corresponding correlation length

j 5 jeq(t) 5 jeq(2t) 5 j01tQ

t0
2

1/4

(7)

[cf. Eq. (4)]. We stress that, yet again, the assumption is that the length scale
that determines the initial correlation length of the field freezes in before the
transition begins.

3. EXPERIMENTS

The jump that Kibble made [2] in QFT was to assume that the correlation
length, Eq. (4), also sets the scale for the typical minimum intervortex distance.
That is, the initial vortex density ndef is4 is assumed to be

ndef 5
1
f 2

1
j2 5

1
f 2j2

0
1t0

tQ
2

2g

(8)

for g 5 1/3 and f 5 O(1). We stress that this assumption is independent of
the argument that led to Eq. (4). Since j0 also measures cold vortex thickness,

4 Equivalently, the length of vortices in a box of volume v is O(ndefv).
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tQ À t0 corresponds to a measurably large number of widely separated
vortices.

Even if cosmic strings were produced in so simple a way in the very early
universe it is not possible to compare the density, Eq. (8), with experiment, in
large part because of our uncertainty as to what is the appropriate theory. It
was Zurek who first suggested that this causal argument for defect density
be tested in condensed matter systems.

3.1. Superfluid Helium

Vortex lines in both superfluid 4He and 3He are good analogues of global
cosmic strings. In 4He the Bose superfluid is characterized by a complex
field f, whose squared modulus .f.2 is the superfluid density. The Landau–
Ginzburg theory for 4He has, as its free energy, F(T ) of Eq. (5). The static
classical field equation dF/df 5 0 has vortex solutions as before with effective
width j0.

The situation is more complicated, but more interesting, for fermionic
3He. Somewhat as in a BCS superconductor, these fermions form the counter-
part to Cooper pairs. However, whereas the (electron) Cooper pairs in a
superconductor form a 1S state, the 3He pairs form a 3P state. The order
parameter Aai is a complex 3 3 3 matrix Aai. There are two distinct superfluid
phases, depending on how the SO(3) 3 SO(3) 3 U(1) symmetry is broken.
If the normal fluid is cooled at low pressures, it makes a transition to the
3He-B phase.

The Landau–Ginzburg free energy is, necessarily, more complicated,
permitting many types of vortex [9], but the effective potential V(Aai, T ) has
the diagonal form [10] V(A, T ) 5 a(T ).Aai.2 1 O(A4) for small fluctuations,
and this is all that we need for the production of vortices at very early
times. Thus the Zurek analysis leads to the prediction Eq. (8), as before, for
appropriate g.5

3.2. Counting Vortices

Although 3He is more complicated to work with, the experiments to
check Eq. (8) are cleaner, since even individual vortices can be detected by
magnetic resonance. Second, because the vortex width is many atomic spac-
ings, the Landau–Ginzburg theory is good (g 5 1/4).

So far, experiments have been of two types. In the Helsinki experiment
[11] superfluid 3He in a rotating cryostat is bombarded by slow neutrons.
Each neutron entering the chamber releases 760 keV via the reaction n 1
3He → p 1 3He 1 760 keV. The energy goes into the kinetic energy of the

5 For 4He, mean-field theory is poor, and a better value for g is g 5 1/3.
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proton and triton, and is dissipated by ionization, heating a region of the
sample above its transition temperature. The heated region then cools back
through the transition temperature, creating vortices. Vortices above a critical
size grow and migrate to the center of the apparatus, where they are counted
by an NMR absorption measurement. The quench is very fast, with tQ /t0 5
O(103). Agreement with Eqs. (7) and (8) is good. This is even though it is
now argued [12] that the Helsinki experiment should not show agreement
because of the geometry of the heating event.

The second type of experiment has been performed at Grenoble and
Lancaster [13]. Rather than count individual vortices, the experiment detects
the total energy going into vortex formation when 3He is irradiated by neu-
trons. After each absorption the energy released in the form of quasiparticles
is measured, and found to be less than the total 760 keV. This missing energy
is assumed to have been expended on vortex production. Again, agreement
with Zurek’s prediction, Eqs. (7) and (8), is good.

The experiments in 4He conducted at Lancaster follow Zurek’s original
suggestion. The idea is to expand a sample of normal fluid helium so that
it becomes superfluid at essentially constant temperature. That is, we change
1 2 T/Tc from negative to positive by reducing the pressure and increasing
Tc. As the system goes into the superfluid phase a tangle of vortices is formed
because of the random distribution of field phases. The vortices are detected
by scattering second sound off them. A mechanical quench is slow, with tQ

some tens of milliseconds, and tQ /t0 5 O(1010). Two experiments have been
performed [14, 15]. In the first fair agreement was found with the prediction
of Eq. (8), but the second experiment failed to see any vortices whatsoever.

There is certainly no agreement, in this or any other experiment on 3He,
with the thermal fluctuation density that would be based on Eq. (3).

4. THE KIBBLE–ZUREK PICTURE FOR THE VALUE OF j IS
CORRECT

To do better than the simple causality arguments we need a concrete
model for the dynamics.

4.1. Condensed Matter: The TDLG Equation at Early Times

We assume that the dynamics of the transition can be derived from the
explicitly time-dependent Landau–Ginzburg free energy

F(t) 5 # d 3x 1"2

2m
.¹f.2 1 a(t).f.2 1

1
4

b.f.42 (9)

obtained from Eq. (5) on identifying a(t) 5 a(T(t)) 5 a0e(t), where e 5
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(T/Tc 2 1). In a quench in which Tc or T changes it is convenient to shift
the origin in time, to write e(t) as

e(t) 5 e0 2
t

tQ
u(t) (10)

for 2` , t , tQ(1 1 e0), after which e(t) 5 21. Here e0 measures the
original relative temperature and tQ defines the quench rate. The quench
begins at time t 5 0 and the transition from the normal to the superfluid
phase begins at time t0 5 e0tQ.

Motivated by Zurek’s later numerical [6] simulations, we adopt the time-
dependent Landau-Ginzburg (TDLG) equation for F, on expressing f as f 5
(f1 1 if2)/!2, such that

1
G

fa

t
5 2

dF
dfa

1 ha (11)

where ha is Gaussian thermal noise satisfying

^ha(x, t)hb(y8, t8)& 5 2dabT(t)Gd(x 2 y)d(t 2 t8) (12)

This is a crude approximation for 4He, and a simplified form of a realistic
description of 3He, but it is not a useful description of QFT, as it stands.

It is relatively simple to determine the validity of Zurek’s argument
since it assumes that freezing-in of field fluctuations occurs just before
symmetry breaking begins. At that time the self-interaction term can be
neglected (b 5 0). In space, time, and temperature units in which j0 5 t0 5
kB 5 1, Eq. (11) then becomes

ḟa(x, t) 5 2[2¹2 1 e(t)]fa(x,t) 1 ha(x,t) (13)

where h is the renormalized noise. The solution of the “free”-field linear
equation is straightforward, giving a Gaussian equal-time correlation function
[16, 17]

^fa(r, t)fb(0, t)& 5 dabG(r, t) (14)

where

G(r, t) 5 #
`

0

dt T(t 2 t/2)(1/(4pt))3/2

3 exp(2r 2/4t) expF2#
t

0

ds e(t 2 s/2)G (15)

and T is the renormalized temperature. At time t0 5 e0t0, when the transition
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begins, a saddle-point calculation shows that, provided the quench is not
too fast,

G(r, t0) '
Tc

4pr
e2a(t/j)4/3

(16)

where a 5 O(1), confirming Zurek’s result, Eq. (7).

4.2. QFT: Closed Time-Path Ensemble Averaging at Early Times

For QFT the situation is rather different. In the previous section, instead
of working with the TDLG equation, we could have worked with the equiva-
lent Fokker–Planck equation for the probability pFP

t [F] that, at time t . 0,
the measurement of f will give the function F(x). Thus G(r,t) of Eq. (14)
can be written as

dabG(r, t) 5 ^fa(r, t)fb(0, t)& 5 # $F pFP
t [F]Fa(r)Fb(0) (17)

When solving the dynamical equations for a hot quantum field it is
convenient to work with probabilities from the start. Taking t 5 0 as our
starting time for the evolution of the complex field f, suppose that at this
time the system is in a pure state, in which the measurement of f would
give F0(x). That is,

f̂(t 5 0, x).F0, t 5 0& 5 F0.F0, t 5 0& (18)

The probability pt[F] that at time t . 0 the measurement of f will give the
function F(x) is the double path integral

pt[F] 5 #
f6(t)5F

f6(0)5F0

$f+ $f2 exp{i(St[f+] 2 St[f2])} (19)

where $f6 5 $f6,1$f6,2 and St[f] is the (time-dependent) action obtained
from Eq. (1) on substituting m(t) 5 m(T(t)) for m(T ).

pt[F] can be written in the closed-time-path form in which, instead of
separately integrating f6 along the time paths 0 # t # tf , the integral can
be interpreted as the time-ordering of a field f along the closed path C+ %
C2 of Fig. 1, where f 5 f+ on C+ and f 5 f2 on C2. When we extend
the contour from tf to t 5 ` either f+ or f2 is an equally good candidate
for the physical field, but we choose f+.

Rather than assume a pure state at time t 5 0, we assume that F is
Boltzmann distributed at time t 5 0 at an effective temperature of T0 5
b21

0 according to the Hamiltonian H[F] corresponding to the free-field action
S0[f], obtained by setting l 5 0 in Eq. (1), in which f is taken to be periodic
in imaginary time with period b0. We now have the explicit form for pt[F],
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Fig. 1. The closed-time-path contour C+ % C2, with the Boltzmann imaginary leg.

pt[F] 5 #
B

$f eiSC[f]d[f+(tf) 2 F] (20)

written as the time ordering of a single field along the contour C 5 C+ %
C2 % C3, extended to include a third imaginary leg, where f takes the values
f+, f2, and f3 on C+, C2, and C3, respectively, for which SC is S[f+], S[f2],
and S0[f3].

Just as we had no need to calculate pFP
t [F] explicitly in condensed

matter, we can average in QFT without having to calculate pt[F] explic-
itly. Specifically,

Gab(r, t) 5 ^Fa(r)Fb(0)&t 5 # $F pt[F]Fa(r) Fb(0) (21)

is given by

Gab(r, t) 5 ^fa(r, t)fb(0, t)& (22)

which is the equal-time thermal Wightman function with the given thermal
boundary conditions.

Fortunately, as for the condensed matter case, the interval 2t # t 2
t0 # t occurs in the linear regime, when the self-interactions are unimportant.
The relevant equation for constructing the correlation functions of this one-
field system is now the second-order equation

2fa

t2 5 2
dF
dfa

(23)

for F of Eq. (1). This is solvable in terms of the mode functions x6
k (t),

identical for a 5 1, 2, satisfying

Fd 2

dt2 1 k2 1 m2(t)Gx6
k (t) 5 0 (24)

subject to x6
k (t) 5 e6ivin,t at t # 0, for incident frequency vin 5

!k2 1 e0 M 2 and m2(t) 5 e(t)M 2, where e(t) is parametrized as for the TDLG
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equation above. This corresponds to a temperature quench from an initial
state of thermal equilibrium at temperature T0 . Tc , where (T0 /Tc 2 1) 5
e0. The diagonal correlation function G(r, t) of Eq. (14) is given as the equal-
time propagator

G(r, t) 5 # d⁄ 3k eik.xx1
k (t)x2

k (t)C(k) (25)

where C(k) 5 coth[vin(k)/2T0]/2 vin(k) encodes the initial conditions.
An exact solution can be given [18] in terms of Airy functions. Dimen-

sional analysis shows that, on ignoring the k dependence of C(k), appropriate
for large r (or small k), jeq(t) of Eq. (4) again sets the scale of the equal-
time correlation function. Specifically,

G(r, t0) } # dk
sin k(r/j)

k(r/j)
F(k) (26)

where F(0) 5 1 and F(k) , k23 for large k. Kibble’s insight is correct, at
least for this case of a single (uncoupled) field.

5. VORTEX DENSITIES DO NOT DETERMINE CORRELATION
LENGTHS DIRECTLY

We have seen that there is no reason to disbelieve the causal arguments
of Kibble for QFT and Zurek for condensed matter as to the field correlation
length at the time of the transition. The excellent agreement with the 3He
experiments also shows that, despite the very interesting simulations of Aran-
son et al. [12], this length does, indeed, characterize vortex separation for
condensed matter at the time when the defects form.

However, the recent Lancaster experiment shows that this cannot always
be the case. Significantly, for 3He the Ginzburg regime is extremely narrow,
whereas for 4He it is very broad. In fact, the 4He experiments begin and end
in the Ginzburg regime, where thermal fluctuations dominate. The causality
arguments are too simple to accommodate these facts.

If these differences are to be visible in the formalism, it can only be
through the way in which we relate vortex density to correlation length.
We have already observed that the TDLG equation can be recast as the
Fokker–Planck equation, whereby the ensemble averages can be understood
as averaging with respect to the probability pt[F(x)] that, at time t, the field
takes value F(x). We can use these probabilities, implicit in the correlation
functions, to estimate defect densities.
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5.1. Classical Defects in Condensed Matter

It would be foolish to estimate the probability of finding vortex profiles
directly. One way is to work through line zeros, since vortices have line zeros
of the complex field f at the center of their cores. The converse is not true
since zeros occur on all scales. However, a starting point for counting vortices
in superfluids is to count line zeros of an appropriately coarse-grained field
[19]. Not wishing to entertain vortices within vortices, we put a cutoff l 5
O(j0) by hand into the Fourier transform G(k, t) of G(r, t), as

Gl(r, t) 5 # d⁄ 3k eik.r G(k, t) e2k2l2 (27)

We stress that the long-distance correlation length jeq(t) depends essentially
on the position of the nearest singularity of G(k, t) in the complex k-plane,
independent of l.

This is not the case for the line-zero density nzero. For example, in our
Gaussian approximation of the previous section nzero can be calculated exactly
from the two-point correlation function G(r, t) with pt[F] implicit. It can be
shown quite easily [20, 21] that it depends on the short-distance behavior
of Gl(r, t) as

nzero(t) 5
21
2p

G9l (0, t)

Gl(0, t)
(28)

i.e., the ratio of fourth to second moments of G(k, t) e2k2l2.
There are several prerequisites before line zeros can be identified with

vortex cores, and nzero(t) with ndef(t).
1. The field, on average must have achieved its symmetry-broken ground-

state equilibrium value

^.f.2& 5 a0/b (29)

This in itself is sufficient to show that the causal time t is not the time to
begin looking for defects since ^.f.2& is small at this time. This, in turn,
requires that G(k, t) be nonperturbatively (in b) large.

2. Only when nzero/l is small in comparison to nzero/l at l 5 j0 will
the line zeros have the nonfractal nature of classical defects on small scales,
although vortices may behave like random walks on larger scales. As the
power in the long-wavelength modes increases, the “Bragg” peak develops
in k2G(k, t), moving in toward k 5 0. This condition then becomes the
condition that the peak dominates its tail.

3. The energy in field gradients should be commensurate with the energy
in classical vortices with same density as that of line zeros.
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We stress that these are necessary, but not sufficient, conditions for
classical vortices. In particular, although they can be satisfied in the self-
consistent linear approximation that will be outlined below, only the full
nonlinearity of the system can establish classical profiles. We will term such
zeros as satisfy these conditions protovortices. It has to be said that most
(but not all [22, 23]) numerical lattice simulations cannot distinguish between
protovortices and classical vortices.

5.2. TDLG Condensed Matter

We begin with condensed matter, which we will find to be easier. As
the system evolves away from the transition time, the free equation (13)
ceases to be valid. In order to retain some analytic understanding of the way
that the density is such an ideal quantity for which to make predictions, we
adopt the approximation of preserving Gaussian fluctuations by linearizing
the self-interaction as

ḟa(x, t) 5 2[2¹2 1 eeff(t)] fa(x, t) 1 ha(x, t) (30)

where eeff contains a (self-consistent) term O(b^.f.2&), in which b is the
rescaled coupling. Additive renormalization is necessary, so that eeff ' e, as
given earlier, for t # t0.

Self-consistent linearization is the standard approximation in nonequilib-
rium QFT [36, 37], but is not strictly necessary here since numerical simula-
tions that identify line zeros of the field can be made that use the full self-
interaction [6]. However, there are none that address our particular problems
exactly. Given the similarities with the QFT case, for which it is difficult to
do much better than a Gaussian, there are virtues in comparing the Gaussian
approximation for the two cases.

The solution for G(r, t) is a straightforward generalization of Eq. (15),

G(r, t) 5 #
`

0

dt T(t 2 t/2)(1/(4pt))3/2

3 exp(2r 2/4t) expF2#
t

0

ds eeff(t 2 s/2)G (31)

where T is the rescaled temperature, as before.
Assuming a single zero of eeff(t) at t 5 t0 at r 5 0 the exponential in

the integrand peaks at t 5 t 5 2(t 2 t0), the counterpart of the Bragg peak
in proper time. Expanding about t to quadratic order gives [17]
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Gl(0, t) ' Tc expF2 #
t

t0

du .eeff(u).G
3 #

`

0

dt exp[2(t 2 2(t 2 t0))2.e8(t0)./4]
[4p(t 1 l2)]3/2 (32)

where we have put in the momentum cutoff k21 . l 5 lj0 5 O(j0) of Eq.
(27) by hand. For times t . e0tQ we see that, as the unfreezing occurs, long-
wavelength modes with k2 , t/tQ 2 e0 grow exponentially.

For the backreaction to stop the growth of Gl(0, t) 2 Gl(0, t0) at its
symmetry-broken value b21 we must have limu→` eeff(u) 5 0, thereby preserv-
ing Goldstone’s theorem.

Even though the field is correlated over a distance j À l at t 5 t0, the
density of line zeros nzero 5 O(l22) depends entirely on the scale at which
we look. In no way would we wish to identify these line zeros with prototype
vortices. However, as time passes the peak of the exponential grows and nzero

becomes increasingly insensitive to l. How much time we have depends on
the magnitude of b, since once G(0, t) has reached this value it stops growing.
The time t* at which this happens can be estimated by substituting e(u) for
eeff(u) in the expression for Gl(0, t) above.

For t . t* a more careful analysis shows that Gl(0, t) can be written as

Gl(0, t) ' #
`

0

dt T(t 2 t/2)
[4p(t 1 l2)]3/2 G(t, t) (33)

where G(t, t) has the same peak as before at t 5 2(t 2 t0), in magnitude
and position, but G(t, t) > 1 for t , 2(t 2 t*). Thus, for tQ À t0, Gl(0, t)
can be approximately separated as Gl(0, t) > GUV

l (t) 1 GIR(t), where

GUV
l (t) 5 T(t) #

`

0

dt/[4p(t 1 l2)]3/2 (34)

describes the scale-dependent short-wavelength thermal noise, and

GIR(t) 5
Tc

(8p(t 2 t0))3/2 #
`

2`

dt G(t, t) (35)

describes the scale-independent, temperature-dependent, long-wavelength
fluctuations. A similar decomposition G9l(0, t) > G9UV

t (t) 1 G9IR(t) can be
performed. In particular, G9IR(t)/GIR(t) 5 O(t21).

First, suppose that, for t . t*, GIR(t) À GUV
l (t) and G9IR(t) À G9UV

l (t),
as would be the case for a temperature quench T(t) → 0. Then, with little
thermal noise, we have widely separated line zeros, with density nzero(t) '
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2G9IR(t)/2pGIR(t) and nzero/l is small in comparison to nzero/l at l 5 j0.
Further, once the line zeros have straightened on small scales at t . t*, the
Gaussian field energy, largely in field gradients, is

F ' K#
V

d 3x
1
2

(¹fa)2L 5 2VG9(0, t) (36)

where V is the spatial volume. This matches the energy

E ' Vndef(t)(2pG(0, t)) 5 2VG9(0, t) (37)

possessed by a network of classical global strings with density nzero, in the
same approximation of cutting off their logarithmic tails.

From our comments above, we identify such essentially nonfractal line
zeros with prototype vortices, and nzero with ndef. Of course, we require non-
Gaussianity to create true classical energy profiles [23].

For times t . t*

ndef(t) '
t

8p(t 2 t0)
1
j2

0
!t0

tQ
(38)

which is the solution to Vinen’s equation [24]

ndef

t
5 2x2

"

m
n2

def (39)

where x2 5 4p in our approximation.6 What is remarkable in this approxima-
tion is that the density of line zeros uses no property of the self-mass contribu-
tion to eeff(t), self-consistent or otherwise.

For 3He, with negligible UV contributions, we estimate the primordial
density of vortices as

ndef(t*) '
t

8p(t* 2 t0)
1
j2

0
!t0

tQ
(40)

in accord with the original prediction of Zurek. Because of the rapid growth
of G(0, t), (t* 2 t0)/t 5 p . 1 5 O(1). We note that the factor7 of f 2 5 8pp
gives a value of f 5 O(10), in agreement with the empirical results of ref.
13 and the numerical results of ref. 25.8

Whereas Eq. 5, (40) is appropriate for 3He, the situation for the Lancaster
4He experiments is complex, since they are pressure quenches for which the

6 Calculations for x2 for realistic values of j0 and t0 give x2 . 4p for both 4He and 3He. This
is much larger than the empirical value [15] x2 ' 0.005 from turbulent flow experiments.

7 An erroneous factor of 3 appeared in the result of ref. 16.
8 The temperature quench of the latter is somewhat different from that considered here, but
should still give the same results in this case.
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temperature T is almost constant at T ' Tc. Unlike temperature quenches [6,
26], thermal fluctuations here remain at full strength.9 The necessary time
independence of GIR(t) for t . t* is achieved by taking eeff(u) 5 O(u21). In
consequence, as t increases beyond t* the relative magnitude of the UV and
IR contributions to Gl(0, t) remains approximately constant at its value at
t 5 t*.

Nonetheless, as long as the UV fluctuations are insignificant at t 5 t*
the density of line zeros will remain largely independent of scale. This follows
if G9IR(t*) À G9UV

l (t*), since G9l(0, t) becomes scale independent later than
Gl(0, t). In ref. 16 we showed that this is true provided

(tQ /t0)(1 2 TG /Tc) # Cp4 (41)

where C 5 O(1) and TG is the Ginzburg temperature. With tQ /t0 5 O(103)
and (1 2 TG /Tc) 5 O(10212) this inequality is well satisfied for a linearized
TDLG theory for 3He derived10 from the full TDGL theory [10], but there
is no way that it can be satisfied for 4He when subjected to a slow mechanical
quench, as in the Lancaster experiment, for which tQ /t0 5 O(1010) since the
Ginzburg regime is so large that (1 2 TG /Tc) 5 O(1). As far as the left-hand
side of Eq. (41) is concerned, the 4He quench is 19 orders of magnitude
slower than its 3He counterpart.

When the inequality is badly violated, as with 4He, the density of zeros
nzero 5 O(l22) after t* again depends explicitly on the scale l at which we
look and they are not candidates for vortices. Since the whole of the quench
takes place within the Ginzburg regime this is not implausible. Even if we
suppose that ndef above is a starting point for calculating the density at later
times, albeit with a different t0, thereby preserving Vinen’s law, we then have
the earlier problem of the large x2 5 O( f 2), which would make it almost
impossible to see vortices.

For all that, a numerical simulation that goes beyond the Gaussian
approximation specifically tailored to the Lancaster parameters is crucial if we
are to understand what is really happening. We hope to pursue this elsewhere.

6. THE APPEARANCE OF STRUCTURE IN QFT

When in Section 5.2 we set up the closed-time-path formalism for the
field probabilities pt[F], our aim was the limited one of establishing the role
of Kibble’s causal correlation length j in Eq. (26) We now appreciate, from

9 Even for 3He, T/Tc never gets very small, and henceforth we take T 5 Tc in Gi (0,t) above.
10 Ignoring the position-dependent temperature of ref. 12.
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condensed matter theory, that this does not, of itself, imply vortices at that
separation.

6.1. Protovortices in QFT

To establish a link between the correlation function G(r, t) and vortices
is even more problematic in QFT than for condensed matter systems. Yet
again, we attempt to count vortices by counting line zeros [27]. In the Gaussian
approximations that we shall continue to adopt, the expression (28) for nzero

is equally applicable to QFT. This counting of zeros is the basis of numerous
numerical simulations [28–30] of cosmic string networks built from
Gaussian fluctuations.

The prerequisites for line zeros in condensed matter that we posed after
Eq. (28) still stand for QFT (except that ^.f2.& 5 M 2/l), but there are further
complications peculiar to QFT. In particular, in QFT we need to consider
the whole density matrix ^F8.r(t).F& rather than just the diagonal elements
pt[F] 5 ^F.r(t).F&. Classicality is understood in terms of “decoherence”
manifest most simply by the approximate diagonalization of the reduced
density matrix on coarse-graining. By this we mean the separation of the
whole into the “system” and its “environment” whose degrees of freedom
are integrated over, to give a reduced density matrix. The environment can
be either other fields with which our scalar is interacting or even the short-
wavelength modes of the scalar field itself [31, 32]. When interactions are
taken into account this leads to quantum noise and dissipation.

In the Gaussian approximations that we shall adopt here, with ^F& 5
0, integrating out short wavelengths with k . l21 is just equivalent to a
momentum cutoff at the same value. This gives neither noise nor dissipation
and diagonalization does not occur. Nonetheless, from our viewpoint of
counting line zeros, fluctuations are still present when l 5 O(M21) that can
prevent us from identifying line zeros with protovortices if the quenches are
too slow.

For all these caveats, there are other symptoms of classical behavior
once Gl(0; t) is nonperturbatively large. Instead of a field basis, we can work
in a particle basis and measure the particle production as the transition
proceeds. The presence of a nonperturbatively large peak in k2G(k; t) at k 5
k0 signals a nonperturbatively large occupation number Nk0 } 1/l of particles
at the same wavenumber k0 [36]. With nzero of (28) of order k2

0 this shows
that the long-wavelength modes can now begin to be treated classically. From
a slightly different viewpoint, the Wigner functional only peaks about the
classical phase-space trajectory once the power is nonperturbatively large
[33, 34]. More crudely, the diagonal density matrix elements are only then
significantly nonzero for nonperturbatively large field configurations f }
l21/2, like vortices.
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6.2. Mode Growth Versus Fluctuations

For early times we revert to the mode decomposition of Eq. (24). The
term coth (vin/2T0) appearing in it can be approximated by 2T0 /!e0 M. Even
though this is a temperature quench, it shows strong similarities to the pressure
quench of condensed matter since both the long- and short-wavelength contri-
butions to G(r, t) are scaled by the same temperature and we cannot switch
off the latter.

The field becomes ordered, as before, because of the exponential growth
of long-wavelength modes, which stop growing once the field has sampled
the ground states. What matters is the relative weight of these modes (the
“Bragg” peak) to the fluctuating short-wavelength modes in the decomposi-
tion (25) at this time since the contribution of these latter is very sensitive
to the cutoff l. Only if their contribution to Eq. (8) is small when field growth
stops can a network of line zeros be well defined at early times, let alone
have the predicted density. Since the peak is nonperturbatively large this
requires small coupling, which we assume.

Consider a quench with e(t) as in Eq. (10), in which the symmetry
breaking begins at relative time Dt 5 t 2 t0 5 0. For a free roll, the
exponentially growing modes that appear when Dt . t2

k 5 tQ k2/M 2 lead to
the approximate WKB solution [35]

G(r; Dt) }
T

M.m(Dt) 1 M

!DttQ
2

3/2

exp14MDt3/2

3!tQ
2 exp12

r 2

j2(Dt)2 (42)

where j2(Dt) 5 2!DttQ/M. The provisional freeze-in time t* when ^.f2.& 5
M 2/l is then, for MtQ , 1/l,

M Dt* . (MtQ)1/3 [ln(1/l)]2/3 . Mt [ln(1/l)]2/3 (43)

where Dt* 5 t* 2 t0. This is greater than Mt, but not by a large multiple.
Comparison with condensed matter, for which the ratio is a few (3–5),
suggests that we do not need a superweak theory [35].

At this qualitative level the correlation length at t* is given by

M 2j2(t*) . (MtQ)2/3 [ln(1/l)]1/3 (44)

giving, at t 5 t*,

nzero 5
M 2

p(MtQ)2/3 [ln(1/l)]21/3[1 1 E ] (45)

The error term E 5 O (l1/2(MtQ)4/3 [ln(1/l)]21/3) is due to the ever-present
thermal fluctuations, sensitive to the cutoff. In mimicry of Eq. (8), it is helpful
to rewrite Eq. (45) as



1798 Rivers

nzero 5 F 1
pj2

0
1t0

tQ
2

2/3G[ln(1/l)]21/3[1 1 E ] (46)

in terms of the scales t0 5 j0 5 M21. The first term in Eq. (46) is the Kibble
estimate of Eq. (8), and the second is a small multiplying factor, which yet
again shows that the estimate can be correct, but for completely different
reasons. The third term shows when it can be correct, since E is also a
measure of the sensitivity of ndef to the scale at which it is measured. The
condition E 2 ¿ 1, necessary for a protovortex network to be defined, is then
guaranteed if

(tQ /t0)2(1 2 TG /Tc) , C (47)

C 5 O(1), on using the relation 1 2 TG /Tc 5 O(l). This is the QFT counterpart
to Eq. (41).

6.3. Backreaction in QFT

To improve upon the free-roll result more honestly, but retain the
Gaussian approximation for the field correlation functions, the best we can
do is adopt a mean-field approximation along the lines of refs. [36 and 37],
as we did for the CM systems earlier. As there, it does have the correct
behavior of stopping domain growth as the field spreads to the potential
minima. As before, only the large-N expansion preserves Goldstone’s
theorem.

G(r;t) still has the mode decomposition of Eq. (25), but the modes x6
k

now satisfy the equation

Fd 2

dt2 1 k2 1 m2(t) 1 l^F2(0)&tGx6
k (t) 5 0 (48)

where we have taken N 5 2. Because lf4 theory is not asymptotically free,
particularly in the Hartree approximation, the renormalized l coupling shows
a Landau ghost. This means that the theory can only be taken as a low-
energy effective theory.

The end result, on making a single subtraction at t 5 0, is [35]

Fd 2

dt2 1 k2 1 m2(t) 1 l # d⁄ 3p C( p)[x1
p (t)x2

p (t) 2 1]Gx6
k (t) 5 0 (49)

which we write as

Fd 2

dt2 1 k2 2 m2(t)Gxk(t) 5 0 (50)

On keeping just the unstable modes in ^F2(0)&t , then, as it grows, its contribu-
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tion to (49) weakens the instabilities, so that only longer wavelengths become
unstable. At t* the instabilities shut off, by definition, and oscillatory behavior
ensues. Since the mode with wavenumber k . 0 stops growing at time t1

k

, t*, where m2(t1
k ) 5 k2, the free-roll density at t* must be an overestimate.

An approximation that improves upon the WKB approximation is

xk(t) ' 1 pM
2Vk(h)2

1/2

exp1#
t

0

dt V(t)2 (51)

when h 5 M(t1
k 2 t) . 0 is large, and V2

k(t) 5 m2(t) 2 k2. On expanding
the exponent in powers of k and retaining only the quadratic terms, we recover
the WKB approximation when m(t) is nonzero. The result is to show that
the backreaction has little effect for times t , t*. For t . t* oscillatory modes
take over the correlation function and we expect oscillations in G(k; t).

In practice the backreaction rapidly forces m2(t) toward zero if the
coupling is not too small [36]. This requires that we graft purely oscillatory
long-wavelength behavior onto the nonperturbatively large exponential mode

x1
k (t*) ' ak exp1#

t*

0

dt8 m(t8)2exp12
!tQt*

M
k22 (52)

The end result is a new power spectrum, obtained by superimposing oscillatory
behavior onto the old spectrum, frozen at time t*. As a gross oversimplifica-
tion, the contribution from the earlier exponential modes alone can only be
to contribute terms something like

G(r; t) }
T

M.m(t*).
e4M(t*)3/2/3=tQ #

.k.,M

d⁄ 3k eik.xe22=t*tQk2/M (53)

3 Fcos k(t 2 t*) 1
V(k) 2 W 8(k)

k
sin k(t 2 t*)G2

to G, where V 5 M(t* 2 tk)1/2 /t1/2
Q and W 8 5 1/4(t* 2 tk). The details are

almost irrelevant, since the density of line zeros is independent of the normal-
ization, and only weakly dependent on the power spectrum.

The k 5 0 mode of Eq. (53) encodes the simple solution xk50(t) 5 a
1 bt when m2 5 0. As observed by Boyanovsky et al. [26], this has built
into it the basic causality discussed by Kibble [3]. Specifically, for r,t → `,
but r/2t constant (Þ 1),

G(r, t) ' (C/r)U(2t/r 2 1) (54)

It follows directly that this causality, engendered by the Goldstone particles
of the self-consistent theory, has little effect on the density of line zeros that
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we expect to mature into fully classical vortices, since that is determined by
the behavior at r 5 0.

Further, for large t the power spectrum effectively has a k22 behavior
for small k, unlike the white noise that would follow from Eq. (42) It has
been suggested [29] that for such a spectrum most, if not all, of the vortices
are in loops, with little or no self-avoiding “infinite” string (but see ref. 30).
If there was no infinite string the evolution of the network could be very
different [38] from that of white noise, where approximately 75% of the
string is “infinite” [28]. Although causality due to massless Goldstone modes
is unrealistic, the linking of causal horizons to the long-wavelength spectrum
is general. It has to be said that this approximation should not be taken very
seriously for large t on different grounds, since we would expect rescattering
to take place at times Dt 5 O(1/l) in a way that is precluded by the
Gaussian approximation.

Returning to our original concerns, if Eq. (47) is not satisfied, it is
difficult to imagine how clean vortices, or protovortices, can appear later
without some additional ingredient.

7. CONCLUSIONS

We examined the Kibble/Zurek predictions for the onset of phase transi-
tions and the appearance of defects (in particular, vortices or global cosmic
strings) as a signal of the symmetry breaking. Our results are in agreement
with their predictions, Eqs. (4) and (7), as to the magnitude of the correlation
length at the time the transition truly begins, equally true for condensed
matter and QFT.

However, this is not simply a measure of the separation of defects at
the time of their appearance. The time t is too early for the field to have
found the true ground states of the theory. We believe that time, essentially
the spinodal time, is the time at which protovortices can appear, which can
later evolve into the standard classical vortices of the theory.

Even then, they may not appear because of thermal field fluctuations.
In TDLG condensed matter thermal noise is proportional to temperature. If
temperature is fixed, but not otherwise, as in the pressure quenches of 4He,
this noise can inhibit the production of vortices, although there are other
factors to be taken into account (such as their decay rate). On the other hand,
on quenching from a high temperature in QFT there are always thermal
fluctuations, and these can also disturb the appearance of vortices. The condi-
tion that thermal fluctuations are ignorable at the time that the field has
achieved the true ground states can be written

(tQ /t0)g(1 2 TG /Tc) , C (55)

where g 5 1 for condensed matter and g 5 2 for QFT. Here C 5 O(1).



Fluctuations and Phase Transition Dynamics 1801

Equivalently, this can be understood as the condition that the density of line
zeros is insensitive to the scale O(j0) at which they are viewed, as would
happen for a classical vortex network.

This restores the role of the Ginzburg temperature TG that the simple
causal arguments overlooked, but does not restore thermal fluctuations as
the exclusive agent for vortex production, as happened in early arguments.
Quenches in 4He provide the major example for which Eq. (55) is not satisfied.

What happens at late time is unclear, although for the TDLG, numerical
simulations can be performed (but have yet to address this problem exactly).
On the other hand, not only is the case of a single self-interacting quantum
scalar field in flat space-time a caricature of the early universe, but it is
extremely difficult to go beyond the Gaussian approximation. To do better
requires that we do differently. There are several possible approaches. One
step is to take the FRW metric of the early universe seriously, whereby the
dissipation due to the expansion of the universe can change the situation
dramatically [39]. Other approaches are more explicit in their attempts to
trigger decoherence explicitly, as we mentioned earlier. Most simply, the
short-wavelength parts of the field can be treated as an environment to be
integrated over, to give a coarse-grained theory of long-wavelength modes
acting classically in the presence of noise. However, such noise is more
complicated than in TDLG theory, being multiplicative as well as additive,
and colored [40, 32, 31]. This is an area to be pursued elsewhere.
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